Javascript required
Skip to content Skip to sidebar Skip to footer

Draw the Projection of a Vector Onto a Line

Projection of a on b (a 1), and rejection of a from b (a 2).

When 90° < θ ≤ 180°, a 1 has an opposite direction with respect to b.

The vector projection of a vector a on (or onto) a nonzero vector b, sometimes denoted proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } (also known as the vector component or vector resolution of a in the direction of b), is the orthogonal projection of a onto a straight line parallel to b. It is a vector parallel to b, defined as:

a 1 = a 1 b ^ {\displaystyle \mathbf {a} _{1}=a_{1}\mathbf {\hat {b}} \,}

where a 1 {\displaystyle a_{1}} is a scalar, called the scalar projection of a onto b, and is the unit vector in the direction of b.

In turn, the scalar projection is defined as:[1]

a 1 = a cos θ = a b ^ {\displaystyle a_{1}=\left\|\mathbf {a} \right\|\cos \theta =\mathbf {a} \cdot \mathbf {\hat {b}} \,}

where the operator denotes a dot product, ‖a‖ is the length of a, and θ is the angle between a and b.

Which finally gives:

a 1 = ( a b ^ ) b ^ = a b b b b = a b b 2 b = a b b b b . {\displaystyle \mathbf {a} _{1}=\left(\mathbf {a} \cdot \mathbf {\hat {b}} \right)\mathbf {\hat {b}} ={\frac {\mathbf {a} \cdot \mathbf {b} }{\left\|\mathbf {b} \right\|}}{\frac {\mathbf {b} }{\left\|\mathbf {b} \right\|}}={\frac {\mathbf {a} \cdot \mathbf {b} }{\left\|\mathbf {b} \right\|^{2}}}{\mathbf {b} }={\frac {\mathbf {a} \cdot \mathbf {b} }{\mathbf {b} \cdot \mathbf {b} }}{\mathbf {b} }~.}

The scalar projection is equal to the length of the vector projection, with a minus sign if the direction of the projection is opposite to the direction of b. The vector component or vector resolute of a perpendicular to b, sometimes also called the vector rejection of a from b (denoted oproj b a {\displaystyle \operatorname {oproj} _{\mathbf {b} }\mathbf {a} } ),[2] is the orthogonal projection of a onto the plane (or, in general, hyperplane) orthogonal to b. Both the projection a 1 and rejection a 2 of a vector a are vectors, and their sum is equal to a, which implies that the rejection is given by: a 2 = a a 1 . {\displaystyle \mathbf {a} _{2}=\mathbf {a} -\mathbf {a} _{1}.}

Notation [edit]

Typically, a vector projection is denoted in a bold font (e.g. a 1), and the corresponding scalar projection with normal font (e.g. a 1). In some cases, especially in handwriting, the vector projection is also denoted using a diacritic above or below the letter (e.g., a 1 {\displaystyle {\vec {a}}_{1}} or a 1). The vector projection of a on b and the corresponding rejection are sometimes denoted by a b and a b , respectively.

Definitions based on angle θ [edit]

Scalar projection [edit]

The scalar projection of a on b is a scalar equal to

a 1 = a cos θ , {\displaystyle a_{1}=\left\|\mathbf {a} \right\|\cos \theta ,}

where θ is the angle between a and b.

A scalar projection can be used as a scale factor to compute the corresponding vector projection.

Vector projection [edit]

The vector projection of a on b is a vector whose magnitude is the scalar projection of a on b with the same direction as b. Namely, it is defined as

a 1 = a 1 b ^ = ( a cos θ ) b ^ {\displaystyle \mathbf {a} _{1}=a_{1}\mathbf {\hat {b}} =(\left\|\mathbf {a} \right\|\cos \theta )\mathbf {\hat {b}} }

where a 1 {\displaystyle a_{1}} is the corresponding scalar projection, as defined above, and b ^ {\displaystyle \mathbf {\hat {b}} } is the unit vector with the same direction as b:

b ^ = b b {\displaystyle \mathbf {\hat {b}} ={\frac {\mathbf {b} }{\left\|\mathbf {b} \right\|}}\,}

Vector rejection [edit]

By definition, the vector rejection of a on b is:

a 2 = a a 1 {\displaystyle \mathbf {a} _{2}=\mathbf {a} -\mathbf {a} _{1}}

Hence,

a 2 = a ( a cos θ ) b ^ {\displaystyle \mathbf {a} _{2}=\mathbf {a} -\left(\left\|\mathbf {a} \right\|\cos \theta \right)\mathbf {\hat {b}} }

Definitions in terms of a and b [edit]

When θ is not known, the cosine of θ can be computed in terms of a and b, by the following property of the dot product ab

a b a b = cos θ {\displaystyle {\frac {\mathbf {a} \cdot \mathbf {b} }{\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|}}=\cos \theta }

Scalar projection [edit]

By the above-mentioned property of the dot product, the definition of the scalar projection becomes:[1]

a 1 = a cos θ = a a b a b = a b b . {\displaystyle a_{1}=\left\|\mathbf {a} \right\|\cos \theta =\left\|\mathbf {a} \right\|{\frac {\mathbf {a} \cdot \mathbf {b} }{\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|}}={\frac {\mathbf {a} \cdot \mathbf {b} }{\left\|\mathbf {b} \right\|}}.}

In two dimensions, this becomes

a 1 = a x b x + a y b y b . {\displaystyle a_{1}={\frac {\mathbf {a} _{x}\mathbf {b} _{x}+\mathbf {a} _{y}\mathbf {b} _{y}}{\left\|\mathbf {b} \right\|}}.}

Vector projection [edit]

Similarly, the definition of the vector projection of a onto b becomes:

a 1 = a 1 b ^ = a b b b b , {\displaystyle \mathbf {a} _{1}=a_{1}\mathbf {\hat {b}} ={\frac {\mathbf {a} \cdot \mathbf {b} }{\left\|\mathbf {b} \right\|}}{\frac {\mathbf {b} }{\left\|\mathbf {b} \right\|}},} [1]

which is equivalent to either

a 1 = ( a b ^ ) b ^ , {\displaystyle \mathbf {a} _{1}=\left(\mathbf {a} \cdot \mathbf {\hat {b}} \right)\mathbf {\hat {b}} ,}

or[3]

a 1 = a b b 2 b = a b b b b . {\displaystyle \mathbf {a} _{1}={\frac {\mathbf {a} \cdot \mathbf {b} }{\left\|\mathbf {b} \right\|^{2}}}{\mathbf {b} }={\frac {\mathbf {a} \cdot \mathbf {b} }{\mathbf {b} \cdot \mathbf {b} }}{\mathbf {b} }~.}

Scalar rejection [edit]

In two dimensions, the scalar rejection is equivalent to the projection of a onto b = ( b y b x ) {\displaystyle \mathbf {b} ^{\perp }={\begin{pmatrix}-\mathbf {b} _{y}&\mathbf {b} _{x}\end{pmatrix}}} , which is b = ( b x b y ) {\displaystyle \mathbf {b} ={\begin{pmatrix}\mathbf {b} _{x}&\mathbf {b} _{y}\end{pmatrix}}} rotated 90° to the left. Hence,

a 2 = a sin θ = a b b = a y b x a x b y b . {\displaystyle a_{2}=\left\|\mathbf {a} \right\|\sin \theta ={\frac {\mathbf {a} \cdot \mathbf {b} ^{\perp }}{\left\|\mathbf {b} \right\|}}={\frac {\mathbf {a} _{y}\mathbf {b} _{x}-\mathbf {a} _{x}\mathbf {b} _{y}}{\left\|\mathbf {b} \right\|}}.}

Such a dot product is called the "perp dot product."[4]

Vector rejection [edit]

By definition,

a 2 = a a 1 {\displaystyle \mathbf {a} _{2}=\mathbf {a} -\mathbf {a} _{1}}

Hence,

a 2 = a a b b b b . {\displaystyle \mathbf {a} _{2}=\mathbf {a} -{\frac {\mathbf {a} \cdot \mathbf {b} }{\mathbf {b} \cdot \mathbf {b} }}{\mathbf {b} }.}

Properties [edit]

If 0° ≤ θ ≤ 90°, as in this case, the scalar projection of a on b coincides with the length of the vector projection.

Scalar projection [edit]

The scalar projection a on b is a scalar which has a negative sign if 90 degrees < θ ≤ 180 degrees. It coincides with the length ‖c‖ of the vector projection if the angle is smaller than 90°. More exactly:

  • a 1 = ‖a 1‖ if 0° ≤ θ ≤ 90°,
  • a 1 = −‖a 1‖ if 90° < θ ≤ 180°.

Vector projection [edit]

The vector projection of a on b is a vector a 1 which is either null or parallel to b. More exactly:

  • a 1 = 0 if θ = 90°,
  • a 1 and b have the same direction if 0° ≤ θ < 90°,
  • a 1 and b have opposite directions if 90° < θ ≤ 180°.

Vector rejection [edit]

The vector rejection of a on b is a vector a 2 which is either null or orthogonal to b. More exactly:

  • a 2 = 0 if θ = 0° or θ = 180°,
  • a 2 is orthogonal to b if 0 < θ < 180°,

Matrix representation [edit]

The orthogonal projection can be represented by a projection matrix. To project a vector onto the unit vector a = (ax, ay, az ), it would need to be multiplied with this projection matrix:

P a = a a T = [ a x a y a z ] [ a x a y a z ] = [ a x 2 a x a y a x a z a x a y a y 2 a y a z a x a z a y a z a z 2 ] {\displaystyle P_{\mathbf {a} }=\mathbf {a} \mathbf {a} ^{\textsf {T}}={\begin{bmatrix}a_{x}\\a_{y}\\a_{z}\end{bmatrix}}{\begin{bmatrix}a_{x}&a_{y}&a_{z}\end{bmatrix}}={\begin{bmatrix}a_{x}^{2}&a_{x}a_{y}&a_{x}a_{z}\\a_{x}a_{y}&a_{y}^{2}&a_{y}a_{z}\\a_{x}a_{z}&a_{y}a_{z}&a_{z}^{2}\\\end{bmatrix}}}

Uses [edit]

The vector projection is an important operation in the Gram–Schmidt orthonormalization of vector space bases. It is also used in the separating axis theorem to detect whether two convex shapes intersect.

Generalizations [edit]

Since the notions of vector length and angle between vectors can be generalized to any n-dimensional inner product space, this is also true for the notions of orthogonal projection of a vector, projection of a vector onto another, and rejection of a vector from another.

In some cases, the inner product coincides with the dot product. Whenever they don't coincide, the inner product is used instead of the dot product in the formal definitions of projection and rejection. For a three-dimensional inner product space, the notions of projection of a vector onto another and rejection of a vector from another can be generalized to the notions of projection of a vector onto a plane, and rejection of a vector from a plane.[5] The projection of a vector on a plane is its orthogonal projection on that plane. The rejection of a vector from a plane is its orthogonal projection on a straight line which is orthogonal to that plane. Both are vectors. The first is parallel to the plane, the second is orthogonal.

For a given vector and plane, the sum of projection and rejection is equal to the original vector. Similarly, for inner product spaces with more than three dimensions, the notions of projection onto a vector and rejection from a vector can be generalized to the notions of projection onto a hyperplane, and rejection from a hyperplane. In geometric algebra, they can be further generalized to the notions of projection and rejection of a general multivector onto/from any invertible k-blade.

See also [edit]

  • Scalar projection
  • Vector notation

References [edit]

  1. ^ a b c "Scalar and Vector Projections". www.ck12.org . Retrieved 2020-09-07 .
  2. ^ Perwass, G. (2009). Geometric Algebra With Applications in Engineering. p. 83. ISBN9783540890676.
  3. ^ "Dot Products and Projections".
  4. ^ Hill, F. S. Jr. (1994). Graphics Gems IV. San Diego: Academic Press. pp. 138–148.
  5. ^ M.J. Baker, 2012. Projection of a vector onto a plane. Published on www.euclideanspace.com.

External links [edit]

  • Projection of a vector onto a plane

Draw the Projection of a Vector Onto a Line

Source: https://en.wikipedia.org/wiki/Vector_projection#:~:text=The%20projection%20of%20a%20vector,plane%2C%20the%20second%20is%20orthogonal.